Optimal Reactive Power Dispatch Using Differential Evolution Algorithm with Voltage Profile Control

نویسنده

  • Messaoudi Abdelmoumene
چکیده

This paper proposes an efficient differential evolution (DE) algorithm for the solution of the optimal reactive power dispatch (ORPD) problem. The main objective of ORPD is to minimize the total active power loss with optimal setting of control variables. The continuous control variables are generator bus voltage magnitudes. The discrete control variables are transformer tap settings and reactive power of shunt compensators. In DE algorithm the other form of differential mutation operator is used. It consists to add the global best individual in the differential mutation operator to improve the solution. The DE algorithm solution has been tested on the standard IEEE 30-Bus test system to minimize the total active power loss without and with voltage profile improvement. The results have been compared to the other heuristic methods such as standard genetic algorithm and particle swarm optimization method. Finally, simulation results show that this method converges to better solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Evolution Based Optimal Reactive Power Dispatch for Voltage Stability Enhancement

Reactive power dispatch (RPD) is one of the important tasks in the operation and control of power system. This paper presents a Differential Evolution (DE) based approach for solving optimal reactive power dispatch including voltage stability limit in power systems. The monitoring methodology for voltage stability is based on the L-index of load buses. The objective is to minimize the real powe...

متن کامل

Quasi-oppositional differential evolution for optimal reactive power dispatch

This paper presents quasi-oppositional differential evolution to solve reactive power dispatch problem of a power system. Differential evolution (DE) is a population-based stochastic parallel search evolutionary algorithm. Quasi-oppositional differential evolution has been used here to improve the effectiveness and quality of the solution. The proposed quasi-oppositional differential evolution ...

متن کامل

Solution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method

For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...

متن کامل

A New Algorithm for Optimum Voltage and Reactive Power Control for Minimizing Transmission Lines Losses

Reactive power dispatch for voltage profile modification has been of interest Abstract to powerr utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be so...

متن کامل

Managing Photovoltaic Generation Effect On Voltage Profile Using Distributed Algorithm

In this paper, a distributed method for reactive power management in a distribution system has been presented. The proposed method focuses on the voltage rise where the distribution systems are equipped with a considerable number of photovoltaic units. This paper proposes the alternating direction method of multipliers (ADMMs) approach for solving the optimal voltage control problem in a distri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013